

FASTENING SYSTEMS SYSTEMES DE FIXATION BEFESTIGUNGSSYSTEME SISTEMAS DE FIJACIÒN

DECLARATION OF PERFORMANCE In accordance with Construction Products Regulation n° 305/2011

DoP No. 09/0140

1. Unique identification code of the product-type: BCR V PLUS / BCR V PLUS-W / BCR V PLUS-T

2. Type, batch, series number or any other element allowing identification of the construction product in accordance with Article 11(4):

BCR + content in ml + V PLUS. Example BCR 400 V PLUS

3. Intended use or uses of the construction product, in accordance with the relevant harmonized technical specification, as intended by the manufacturer:

Intended use		Chemical an	Chemical anchor for anchoring threaded rods.								
Measures		M8	M10	M12	Μ	16	M20		M24	M27	M30
hof [mm]	min	60	70	80	1	00	1	20	145	145	145
ner[mm]	max	160	200	240	3	20	4	00	480	540	600
Intended use		Chemical an	Chemical anchor for anchoring bars with improved adhesion								
Measures		Ø8	Ø10	Ø12	Ø14	Ø	16	Ø20	Ø25	Ø28	Ø32
hof [mm]	min	60	70	80	80	1	00	120	150	180	200
	max	160	200	240	280	3:	20	400	500	560	640
Support type and resistance		Reinforced or non-reinforced concrete of normal weight, resistance class from C20/25 minimum to C50/60 maximum in accordance with EN 206-1.									
material	se	Seismic cate	Jncracked from M8 to M30 and from Ø8 to Ø32, cracked from M10 to M20. Seismic category C1 from M12 to M20 and seismic category C2 for M12 and M16.								
Metallic material of anchor and related environmental expo condition	the osure	Threaded rods: X1) structures subject to dry internal conditions: elements made of galvanized steel (galvanized or hot galvanized) and a2, A4 stainless steel or high corrosion resistance steel (HCR). X2) structures subject to external atmospheric exposure (including industrial and marine environment) and permanently humid internal conditions, if there are no particular aggressive conditions: elements made of a4 stainless steel or high resistance steel (HCR). X3) Structures subject to external atmospheric exposure (including industrial and marine environments) and permanently humid internal conditions, if other particular aggressive conditions exist. Such particularly aggressive conditions are e.g. permanent, alternating immersion in sea water or in the sea water spray zone, chloride atmosphere of swimming pools or indoor environments with chemical pollution (e.g. in desulphurisation plants or road tunnels where anti-icing materials are used): Elements made of corrosion resistant steel (HCR) Bars with improved adhesion class B or C in accordance with EN 1992-1-1									

Cap.Soc. € 520.000 S.V. € 260.000 P.IVA IT 00227840162 R.E.A. BG n.98000 Iscr.Reg.Impr. BG n. 00227840162 BPU – Banca Popolare di Bergamo Agenzia di Longuelo Via Mattioli, 69 ABI 5428 CAB 11103 C/C 220 IBAN:

IT70 C054 2811 1030 0000 0000 220

Deutsche Bank S.p.A. Sede Bergamo Via Camozzi,82 ABI 3104 CAB 11100 C/C13030 IBAN: IT 76 J 03104 11100 000000013030 www.bossong.com

Type of load	Static load, quasi-static and seismic load category C1 and C2. Fire resistant. 100 years service life	
Service temperatures	a) from -40°C to +40°C (max. short-term temperature +40°C and max. long-term continuous temperature +24°C). b) from -40°C to +80°C (max. short-term temperature +80°C and max. long-term continuous temperature +50°C). c) from -40°C to +120°C (max. short-term temperature +120°C and max. long-term continuous temperature +72°C).	
Usage category	Category I1 and I2: dry, wet concrete and flooded hole. Overhead installation permitted. Drilling with standard drill or with vacuum bits.	

4. Name, registered trade name or registered trade mark and address of the manufacturer in accordance with Article 11(5): Bossong SpA - via Enrico Fermi 49/51 - 24050 Grassobbio (Bg) – Italy – <u>www.bossong.com</u>

5. Where appropriate, name and address of the authorized representative whose mandate covers the tasks referred to in Article 12(2):

Not applicable

6. System or systems for evaluating and verifying the constancy of performance of the construction product referred to in Annex V:

System 1

7. In the case of a declaration of performance relating to a construction product that falls within the scope of a harmonized standard:

Not applicable

8. In the case of a declaration of performance relating to a construction product for which a European technical assessment has been issued:

ITB issued ETA-09/0140 based on EAD 330499-02-0601

ITB (n°1488) carried out:

determination of the product-type based on type tests (including sampling), type calculations, values taken from tables or descriptive documentation of the product; initial inspection of the manufacturing plant and factory production control; continuous surveillance, evaluation and verification of factory production control, with attestation system 1 and has issued the certificate of conformity n° 1488-CPR-0119/W.

9. Declared performance:

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601								
ESSENTIAL FEATURES	PERFOR		N ACCOR	DANCE W	ITH ETA-0	9/0140		
Installation parameters	M8	M10	M12	M16	M20	M24	M27	M30
d [mm]	8	10	12	16	20	22-24	27	30
do [mm]	10	12	14	18	24	28	30	35
d _{fix} [mm]	9	12	14	18	22	26	30	33
h1 [mm]				h _{ef} + :	5 mm			
h _{min} [mm]			MAX { h _{ef}	+ 30 mm; 2	≥ 100 mm;	$h_{ef} + 2d_0$		
T _{Fix} [Nm]	10	20	40	80	130	200	250	280
S _{min} [mm]	40	50	60	75	90	115	120	140
C min [mm]	35	40	45	50	55	60	75	80
γ _{inst} [-] Category I1	1.00							
γ inst [-] Category I2				1.1	20			
Resistance for tensile loads	M8	M10	M12	M16	M20	M24	M27	M30
Characteristic resistance on the steel side	NIO	WITU	IVITZ	WITO	IVIZU	IVIZ4	IVIZ I	NISU
Steel class 4.8 N Rk,s [kN]	15	23	34	63	98	141	183	224
Steel class 5.8 N Rk,s [kN]	18	29	42	78	122	176	229	280
Steel class 8.8 N Rk,s [kN]	29	46	67	126	196	282	367	449
Steel class 10.9 N Rk,s [kN]	37	58	84	157	245	353	459	561
Stainless steel A2, A4, HCR class 50 N Rk,s [kN]	18	29	42	78	122	176	229	280
Stainless steel A2, A4, HCR class 70 N Rks [kN]	26	41	59	110	171	247	321	392
A4 stainless steel, HCR class 80 N Rks [kN]	29	46	67	126	196	282	367	449

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601									
ESSENTIAL FEATURES	PERFORMANCE IN ACCORDANCE WITH ETA-09/0140								
Resistance for shear loads	M8	M10	M12	M16	M20	M24	M27	M30	
Characteristic resistance on the steel side without lever arm	IVIO –	WITU	IVI 12	WITO	IVIZU	11/24		NISU	
Steel class 4.8 V ⁰ _{Rks} [kN]	7	12	17	31	49	71	92	112	
Steel class 5.8 V ⁰ _{Rks} [kN]	9	14	21	39	61	88	115	140	
Steel class 8.8 V ⁰ _{Rks} [kN]	15	23	34	63	98	141	184	224	
Steel class 10.9 V ⁰ _{Rk,s} [kN]	18	29	42	78	122	176	230	280	
Stainless steel A2, A4, HCR class 50 V ⁰ _{Rk,s} [kN]	9	14	21	39	61	88	115	140	
Stainless steel A2, A4, HCR class 70 V ⁰ _{Rk,s} [kN]	13	20	29	55	86	124	160	196	
A4 stainless steel, HCR class 80 V ⁰ _{Rk,s} [kN]	15	23	34	63	98	141	184	224	
k7				1.	0				
Resistance for shear loads	M8	M10	M12	M16	M20	M24	M27	M30	
Steel class 4.8 M ⁰ _{Rks} [Nm]	15	30	52	133	260	449	666	900	
Steel class 5.8 M ⁰ _{Rks} [Nm]	19	37	66	166	324	561	832	1125	
Steel class 8 8 M ⁰ _{Pkg} [Nm]	30	60	105	266	519	898	1331	1799	
Steel class 10.9 M ⁰ _{Pk s} [Nm]	37	75	131	333	649	1123	1664	2249	
Stainless steel A2, A4, HCR class 50 M ⁰ Rk s [Nm]	19	37	66	166	324	561	832	1125	
Stainless steel A2, A4, HCR class 70 M ⁰ _{Rk s} [Nm]	26	52	92	233	454	786	1165	1574	
A4 stainless steel, HCR class 80 M ⁰ _{Rks} [Nm]	30	60	105	266	519	898	1331	1799	
Resistance for tensile loads									
Characteristic combined pull-out and concrete cone resistance	M8	M10	M12	M16	M20	M24	M27	M30	
for 50 and 100 years									
τ _{Rk,uer} [N/mm ²] concrete C20/25 Temperature range -40°C/+40°C (T _{mip} = 24°C)		12.0	12.0	12.0	9.5	9.5	8.0	8.0	
$\tau_{Rk,ucr}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+80°C (T mlp = 50°C)	11.0	8.5	8.5	8.5	7.0	7.0	6.0	6.0	
$\tau_{Rk,ucr}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+120°C (T _{min} = 72°C)		4.5	4.5	4.5	4.0	4.0	3.0	3.0	
Resistance for tensile loads									
Characteristic combined pull-out and concrete cone resistance	M8	M10	M12	M16	M20	M24	M27	M30	
for 50 years									
τ _{Rk,cr} [N/mm ²] cracked concrete C20/25	-	9.0	9.0	9.0	6.5	-	-	-	
I emperature range -40°C/+40°C (1 mlp = 24°C)									
τ _{Rk,cr} [N/mm ²] cracked concrete C20/25 Temperature range -40°C/+80°C (T _{mlp} = 50°C)	-	6.5	6.5	6.5	4.5	-	-	-	
τ _{Rk,cr} [N/mm ²] cracked concrete C20/25 Temperature range -40°C/+120°C (T _{mb} = 72°C)	-	3.5	3.5	3.5	2.5	-	-	-	
Resistance for tensile loads									
Characteristic combined pull-out and concrete cone resistance for 100 years	M8	M10	M12	M16	M20	M24	M27	M30	
τ _{Rk,cr} [N/mm ²] cracked concrete C20/25 Temperature range -40°C/+40°C (T _{mlp} = 24°C)		8.5	8.5	8.0	5.5				
$\tau_{Rk,cr}$ [N/mm ²] cracked concrete C20/25 Temperature range -40°C/+80°C (T mlp = 50°C)		6.0	6.0	5.5	4.0				
$\tau_{Rk,cr}$ [N/mm ²] cracked concrete C20/25		3.0	3.0	3.0	2.0				
Ψ c,uc/ucr[-]				$(\frac{f_{ck}}{20})$) ^{0.3}				
Sustained load factor for				0.3	72				
temperature range -40°C / +40°C Sustained load factor for				0.	74				
temperature range -40°C / +80°C Sustained load factor for				0.	/4				
temperature range -40°C / +120°C		1		0.7	75				
Resistance for tensile loads Characteristic resistance for concrete cone	M8	M10	M12	M16	M20	M24	M27	M30	
k _{ucr,N}			·	11	.0	·	•	•	
K cr,N				7.	7				
C cr,N				1.5 hc	ours _{ef}				
S cr,N				3.0	h _{ef}				

Resistance for tensile loads Characteristic resistance for splitting (concrete cracking)		M8	M10	M12	M16	M20	M24	M27	M30	
	if h = h _{min}	2.5 hours _{ef} 2.0 h _{ef} 1.5 hours _{ef}								
C _{cr,sp} [mm]	if $h_{min} < h < 2 h_{min}$				interpolat	ed value				
	if $h \ge 2 h_{min}$				C cr	r,Np				
S cr,sp [mm]					2.0 C	cr,sp				
Resistance for shear le Characteristic resistar	oads ice for dislodging from concrete	M8	M10	M12	M16	M20	M24	M27	M30	
k 8[-]			2.0							
Resistance for shear loads Characteristic resistance to concrete edge failure		M8	M10	M12	M16	M20	M24	M27	M30	
l f[mm]		$I_f = h_{ef}$ and $\leq 12 \text{ dn}_{om}$ $I_f = h_{ef}$ and $\leq max$ (8 d nom;, 300mm)							nd ≤max 300mm)	
Movements under con Tensile loads	ditions of service	M8	M10	M12	M16	M20	M24	M27	M30	
F unc [kN] for concrete fro	om C20/25 to C50/60	9.6	10.8	14.3	23.8	29.6	42.4	40.4	44.4	
δ _{0,unc} [mm]		0,30	0,30	0,35	0,35	0,35	0,40	0,40	0,45	
δ∞,unc [mm]					0,8	35				
F _{cr} [kN] per concrete da	C20/25 a C50/60	-	9,5	14,3	21,4	23,8	-	-	-	
δ _{0,cr} [mm]		-	0,50	0,50	0,70	0.60	-	-	-	
δ ∞, cr [mm]			-	0.8	35		-			
Movements under con Shear loads	ditions of service	M8	M10	M12	M16	M20	M24	M27	M30	
F unc/cr [kN] for concrete	from C20/25 to C50/60	3.7	5.8	8.4	15.7	24.5	35.3	45.5	55.6	
$\delta_{0.unc/cr}$ [mm]					2.0	00				
δ∞, unc / cr [mm]					3.0	00				

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601

ESSENTIAL FEATURES		PERFOR	MANCE IN	ACCORDAN		ETA-09/014	D			
Installation parameters		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d [mm]		8	10	12	14	16	20	25	28	32
d ₀ [mm]		10*-12	12*-14	14*-16	18	20	25	30	35	40
h1 [mm]					V (L 00	h _{ef} + 5 mm				
n _{min} [mm]		40	50	MA 60	X { N _{ef} + 30 75	mm; ≥ 100	<u>mm; n_{ef} + 2</u>	00}	120	140
		40		45	50	75 50	<u>90</u> 55	60	75	80
v inst [-] Category [1			70	70	50	1 00	55	00	15	00
y inst [-] Category 12						1.20				
Resistance for tensile loads										
Characteristic resistance steel side	9	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
N _{Rk,s} [kN]						A _s xf _{uk}				
A _s [mm ²]		50	79	113	154	201	314	491	616	804
Resistance for tensile loads Characteristic combined pull-out a concrete cone resistance for 50 an years	nd d 100	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
$\tau_{\text{Rk,ucr}}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+40°C (T	nlp = 24°C)	14.0	13.0	13.0	12.0	10.0	9.5	9.5	8.5	7.5
τ Rk,ucr [N/mm ²] concrete C20/25 Temperature range -40°C/+80°C (T	_{nlp} = 50°C)	10.0	9.5	9.0	9.0	7.5	7.0	7.0	6.0	5.5
τ _{Rk,ucr} [N/mm ²] concrete C20/25 Temperature range -40°C/+120°C (T 72°C)	mlp =	5.5	5.0	5.0	5.0	4.0	4.0	4.0	3.5	3.0
Ψ c,uc/ucr[-]						$(\frac{f_{ck}}{20})^{0.3}$				
Sustained load factor for temperature range -40°C / +40°C	0	0.72								
Sustained load factor for temperature range -40°C / +80°C	ψ°_{sus}	0.74								
Sustained load factor for temperature range -40°C / +120°C	LJ					0.75				
Resistance for tensile loads Characteristic resistance for conc	ete cone	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
k ucr,N						11.0				
C _{cr,N}						1.5 hours _{ef}				
S cr,N						3.0 h _{ef}				
Resistance for tensile loads Characteristic resistance for splitt (concrete cracking)	ng	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
	if h = h ^{min}	2.5 ho	OURS ef		2.0 h _{ef}			1.5 ho	DUIS ef	
C _{cr,sp} [mm]	if h _{min} < h < 2 h				inte	erpolated va	lue			
	if h≥2 h _{min}					C cr,Np				
S cr,sp [mm]						2.0 C cr,sp				
Resistance for shear loads Characteristic resistance on the st without lever arm	eel side	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
V _{Rk,s} [kN]						0.5x A _s xf _{ul}	(
k ₇ 1.0										
Resistance for shear loads resistance on steel side with lever	arm	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic bending moment M ⁰ _R	_{k,s} [Nm]				1	.2 x Wel x fu	k			
Elastic resistance modulus W el [mm	3]	50	98	170	269	402	785	1534	2155	3217
Resistance for shear loads resistance for dislodaina from con	crete	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
k ₈ [-]						2.0		•		

Resistance for shear loads Characteristic resistance to concrete edge failure	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
l f[mm]	I f = h ef and ≤ 12 d nom					l _f = h _{ef} and ≤max (8 d _{nom} ;, 300mm)			

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601									
ESSENTIAL FEATURES	PERFORM	PERFORMANCE IN ACCORDANCE WITH ETA-09/0140							
Movements under conditions of service Tensile loads	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
F unc [kN] for concrete from C20/25 to C50/60	10.1	13.6	17.2	20.1	23.9	41.2	53.3	64.1	67.3
δ _{0,unc} [mm]	0.33	0.33	0.40	0.41	0.42	0.45	0.45	0.47	0.48
δ∞, unc [mm]					0.85				
Movements under conditions of service Shear loads	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
F unc / cr [kN] for concrete from C20/25 to C50/60	13.2	20.6	29.6	40.3	52.7	82.3	128.6	161.3	210.6
δ 0.unc / cr [mm]	2.00								
$\delta_{\infty, \text{ unc / cr}}[\text{mm}]$					3.00				

*Perforation with reduced diameter

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601 QUALIFICATION FOR SEISMIC ACTIONS CATEGORY C1					
ESSENTIAL FEATURES	PERFORMANCE IN ACCOR	DANCE WITH ETA-09/0140			
Resistance for tensile loads Characteristic resistance on the steel side (class 10.9 threaded rods are not qualified for seismic category C1)	M12	M16	M20		
N _{Rk,s,C1} [kN]		1.0 x N _{Rk,s}			
Resistance for tensile loads Characteristic combined pull-out and concrete cone resistance	M12	M16	M20		
$\tau_{Rk,C1}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+40°C (T mlp = 24°C)	4.2	3.7	3.7		
$\tau_{Rk,C1}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+80°C (T mlp = 50°C)	3.0	2.7	2.7		
$\tau_{Rk,C1}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+120°C (T _{mlp} = 72°C)	1.6	1.4	1.4		
ψ _{c,cr} C30/37 [-]		1.00			
ψ _{c,cr} C40/50 [-]		1.00			
ψ c,cr C50/60 [-]		1.00			
γ inst [-] Category I1		1.0			
γ inst [-] Category I2		1,2			
Characteristic resistance on the steel side without lever arm (class 10.9 threaded rods are not qualified for seismic category C1)	M12	M16	M20		
V _{Rk,s} ,C1 [kN]	0.7 x V ⁰ _{Rk,s}				
Hole fill factor	M12	M16	M20		
$lpha_{ ext{gap}}$ [-]	0.5 (1.0) ²⁾				

²⁾ Value in brackets is valid for the case in which there is no hole-bolt clearance

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601 QUALIFICATION FOR SEISMIC ACTIONS CATEGORY C2						
ESSENTIAL FEATURES	PERFORMANCE IN ACCORDANCE WITH ET	⁻ A-09/0140				
Resistance for tensile loads Characteristic resistance on the steel side (class 10.9 threaded rods are not qualified for seismic category C2)	M12	M16				
N _{Rk,s,C2} [kN]	1.0 x N Rk,s					
Resistance for tensile loads Characteristic combined pull-out and concrete cone resistance for 50 and 100 years	M12	M16				
$\tau_{Rk,C2}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+40°C (T _{mlp} = 24°C)	1.6	1.7				
$\tau_{Rk,C2}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+80°C (T mlp = 50°C)	1,2	1,2				
$\tau_{Rk,C2}$ [N/mm ²] concrete C20/25 Temperature range -40°C/+120°C (T _{mlp} = 72°C)	0.6	0.7				
ψ _{c,cr} C30/37 [-]	1.0)				
ψ _{c,cr} C40/50 [-]	1.0)				
ψ c,cr C50/60 [-]	1.0	0				
γ inst [-] Category I1	1.					
γ inst [-] Category 12 Pesistance for shear loads	، ا ا	2				
Characteristic resistance on the steel side without lever arm (class 10.9 threaded rods are not qualified for seismic category C2)	M12	M16				
V _{Rk,s ,C2} [kN]	0.53 x V ⁰ _{Rk,s}	0.46 x V ⁰ _{Rk,s}				
At 5	>19	%				
Hole fill factor	M12	M16				
α _{gap} [-]	0.5 (1.0) ²					

²⁾ Value in brackets is valid for the case in which there is no hole-bolt clearance

HARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601 QUALIFICATION FOR SEISMIC ACTIONS CATEGORY C2						
ESSENTIAL FEATURES	PERFORMANCE IN ACCORDANCE WITH ETA-09/0140					
Tensile and shear displacements for seismic category C2	M12	M16				
Movements under conditions of service Tensile loads $\delta_{N,seis}$ (DLS [mm]	0.20	0.23				
Movements under ultimate conditions Tensile loads $\delta_{N,seis}$ (ULS) [mm]	0.33	1.04				
Movements under condition of service Shear load $\delta_{V,seis}$ (DLS) [mm]	2.01	0.70				
Movements under ultimate conditions Shear load $\delta_{V,\text{seis}}$ [ULS] [mm]	4.68	2.12				

HARMONIZED TECHNICAL SPECIFICATION : : EAD 330499-02-0601					
ESSENTIAL FEATURES	PERFORMANCE				
Reaction to fire	In the final application the layer thicknesses of product are approximately 1 ÷ 2 mm and most of these products are classified in class A1 according to decision THERE IS 96/603/EC. Therefore one can assume that the material binder (resin synthetic or a mixture of synthetic resin and cementitious) in connection with the metal anchor, in use final application, Not makes any contribution to the development of fire or to a fire fully developed and it hasn't no influence on the risk of smoke development.				

ARMONIZED TECHNICAL SPECIFICATION: EAD 330499-02-0601				
ESSENTIAL FEATURES	PERFORMANCE			
Fire resistant	See graph and tables below			

Characteristic bond strength of a single fastener $\tau_{Rk,fi,p(\theta)}$ for concrete strength classes from C20/25 to C50/60 with all drilling methods under fire conditions for 50 and 100 years

The characteristic bond strength of a single fastener under fire conditions $\tau_{Rk,fi,p}$ for a given temperature (θ) must be calculated using the following equations

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,C20/25}$$

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,100,C20/25}$$

Where

$$\begin{split} & if \ \theta \le \theta_{max} \qquad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0,8049 \cdot e^{-0,0097 \cdot \theta} \le 1,0 \\ & if \ \theta > \theta_{max} \qquad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0 \end{split}$$

 $\theta_{max} = 271^{\circ}C$

 $\tau_{Rk,fi,p}$ = characteristic bond strength for cracked concrete exposed to fire for a given temperature (θ)

 $k_{fi,p(\theta)}$ = reduction factor for bond strength in case of exposure to fire

 $\tau_{Rk, cr, C20/25}$ = characteristic bond strength for cracked concrete for concrete strength class C20/25 for a service life of 50 years given in Table C3.

 $\tau_{Rk, cr, 100, C 20/25}$ = characteristic bond strength for cracked concrete for concrete strength class C20/25 for a service life of 100 years given in table C3.

Diameter			M10	M12	M16	M20
Breakage on the steel side						
	N Rk,s ,fi (30)	[kN]	0.87	1.70	3.14	4.90
Steel close 5.9 9.9	N Rk,s ,fi (60)	[kN]	0.75	1.28	2.36	3.68
Steel class 5.6 - 6.6	N Rk,s ,fi (90)	[kN]	0.58	1.11	2.04	3.19
	N Rk,s ,fi (120)	[kN]	0.46	0.85	1.57	2.45
	N Rk,s ,fi (30)	[kN]	1.45	2.55	4.71	7.35
Stainless steel A4	N Rk,s ,fi (60)	[kN]	1.16	2.13	3.93	6.13
	[kN]	0.93	1.70	3.14	4.90	
	N Rk,s ,fi (120)	[kN]	0.81	1.36	2.51	3.92

Characteristic resistance under tensile load in case of steel failure in fire conditions - threaded rod

Characteristic resistance under shear load with and without lever arm in case of steel failure in fire conditions – threaded rod

Diameter			M10	M12	M16	M20
Breakage on the steel side					-	
	V Rk,s ,fi (30)	[kN]	0.87	1.70	3.14	4.90
Steel along E. 9. 9.9	V Rk,s ,fi (60)	[kN]	0.75	1.28	2.36	3.68
Steel class 5.0 - 0.0	V Rk,s ,fi (90)	[kN]	0.58	1.11	2.04	3.19
	V Rk,s ,fi (120)	[kN]	0.46	0.85	1.57	2.45
	V Rk,s ,fi (30)	[kN]	1.45	2.55	4.71	7.35
Ad atainlana ataol	V Rk,s ,fi (60)	[kN]	1.16	2.13	3.93	6.13
A4 stainiess steel	V Rk,s ,fi (90)	[kN]	0.93	1.70	3.14	4.90
	V Rk,s ,fi (120)	[kN]	0.81	1.36	2.51	3.92
	M Rk,s ,fi (30)	[Nm]	1,1	2,7	6,7	13.0
	M Rk,s ,fi (60)	[Nm]	1.0	2.0	5.0	9,7
Steel class 5.8 - 8.8	M Rk,s ,fi (90)	[Nm]	0.7	1,7	4,3	8,4
	M Rk,s ,fi (120)	[Nm]	0.6	1.3	3.3	6.5
	M Rk,s ,fi (30)	[Nm]	1.9	4.0	10.0	19.5
	M Rk,s ,fi (60)	[Nm]	1.5	3.3	8.3	16.2
A4 Stailliess Steel	M Rk,s ,fi (90)	[Nm]	1,2	2.7	6.7	13.0
	M Rk,s ,fi (120)	[Nm]	1.0	2.1	5.3	10.4

Characteristic resistance under tensile load in case of concrete cone failure and splitting in fire conditions – threaded rod

Diameter			M10	M12	M16	M20	
Concrete cone failure							
	N 0 Rk,c ,fi (30)	[kN]		_			
Steel class 5.8 - 8.8	N 0 Rk,c ,fi (60)	[kN]	$\frac{h_{ef}}{200} * N^0_{Rk,c} \leq N^0_{Rk,c}$				
Δ4 stainless steel	N 0 Rk,c ,fi (90)	[kN]		200			
	N 0 Rk,c ,fi (120)	[kN]		$0,8 * \frac{h_{ef}}{200} * N$	$N_{Rk,c}^0 \leq N_{Rk,c}^0$		
Characteristic wheelbase	S cr,N ,fi	[mm]		4h	ef		
Characteristic distance from the edge	C cr,N ,fi	[mm]		2h	ef		

Characteristic resistance under shear load in case of breakthrough failure in fire conditions – threaded rod

Diameter			M10	M12	M16	M20
Pryout failure						
	V Rk,cp ,fi (30)	[kN]				
Steel class 5.8 - 8.8	V Rk,cp ,fi (60)	[kN]	k8 x N _{Rk,c ,fi} (90)			
A4 stainless steel	V Rk,cp ,fi (90)	[kN]				
	V Rk,cp ,fi (120)	[kN]		k8 x N в	k,c ,fi (120)	

Characteristic resistance under shear load in case of concrete edge failure in fire conditions - threaded rod

Diameter			M10	M12	M16	M20
Concrete edge failure						
	V Rk,c ,fi (30)	[Nm]				
Steel class 5.8 - 8.8	V Rk,c ,fi (60)	[Nm]	0.25 V _{0 Rk,c}			
A4 stainless steel	V Rk,c ,fi (90)	[Nm]				
	V Rk,c ,fi (120)	[Nm]		0.20 \	/ 0 Rk,c	

LEGEND OF S	YMBOLS
d	Diameter of the bolt or threaded part
d o	Hole diameter
d _{fix}	Diameter of the hole in the object to be fixed
h _{ef}	Effective anchoring depth
h 1	Hole depth
h _{min}	Minimum thickness of the concrete support
TFix	Tightening torque
t _{fix}	Fixable thickness
S min	Minimum wheelbase
C min	Minimum distance from the edges
N _{Rk,s}	Characteristic tensile strength on the steel side in case of static load
N Rk,s ,C1	Characteristic tensile strength on the steel side for seismic category C1
N Rk,s ,C2	Characteristic tensile strength on the steel side for seismic category C2
V _{Rk,s}	Characteristic shear resistance on the steel side in case of static load
V Rk,s ,C1	Characteristic shear resistance on the steel side for seismic category C1
V Rk,s ,C2	Characteristic shear resistance on the steel side for seismic category C2
τΡκ	Characteristic adhesion in non-cracked (uncr), cracked (cr) concrete, seismic category C1 and C2
On the left	Cross-sectional area
At 5	Fracture elongation
M ⁰ _{Rk,s}	Characteristic bending moment
W el	Elastic resistance modulus
α _{gap}	Hole fill factor
k ₇	Ductility factor
k 8	Coefficient for concrete undermining
N _{Rk}	Characteristic resistance for pull-out and concrete cone formation for single anchorage
γ inst	Partial safety coefficient relating to the installation of the anchor
S cr,Np	Center distance to ensure the transmission of the characteristic pull-out load for a single anchorage
C cr,Np	Distance from the edge to ensure transmission of the characteristic pull-out load for a single anchor
k uncr,N	Coefficient for non-cracked concrete
k _{cr,N}	Coefficient for cracked concrete
S cr,N	Center distance to ensure the transmission of the characteristic load for the formation of the concrete cone for a single anchorage
C cr,N	Distance from the edge to ensure the transmission of the characteristic load for the formation of the concrete cone for a single anchorage
S cr,sp	Center distance to ensure the transmission of the characteristic load for concrete splitting for a single anchorage
C cr,sp	Distance from the edge to ensure the transmission of the characteristic load for concrete splitting for a single anchorage
Ψ c,ucr	Increase factor for non-cracked concrete classes
Ψ c,cr	Increase factor for cracked concrete classes
lf	Effective length
F	Service load in uncracked concrete (ucr) or cracked concrete (cr)
δ ₀	Short-term displacement under service load in uncracked concrete (uncr) or cracked concrete (cr)
δ_{∞}	Long-term displacement under service load in uncracked concrete (uncr) or cracked concrete (cr)
NPA	Performance not declared

REACH Regulation n°1907/2006

Esteemed customer,

We inform you that our company within the REACH regulation supply chain is classified as a downstream user of substances and preparations.

Regarding the product defined in point 1, we want to confirm that it does not currently contain substances considered SVHC based on the list published at:

http://echa.europa.eu/chem_data/candidate_list_table_en.asp .

The product safety data sheet can be requested from our technical office: <u>tek@bossong.com</u> or <u>tek3@bossong.com</u> and can be downloaded from our website <u>www.bossong.com</u>.

10. The performance of the product referred to in points 1 and 2 is in conformity with the declared performance referred to in point 9.

This declaration of performance is issued under the exclusive responsibility of the manufacturer referred to in point 4. Signed for and on behalf of:

Name and function	Place and date of release	Signature
Andrea Taddei Director General	Grassobbio (Bg) - Italy 27.05.2024	All.

Note: This DoP replaces the previous version dated 05.23.2019.